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The ten classical types of group representations 
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Department of Applied Mathematics, University of Hull, Hull HU6 7RX, U K  

Received 12 November 1984, in final form 14 June 1985 

Abstract. Each irreducible n-dimensional complex representation of an arbitrary group 9 
is shown to be associated with a unique classical group. Such representations are thereby 
classified into ‘ten classical types’ associated with the respective classical groups GL( n ;  C), 
O ( n ;  C), Sp(n;  C), U(r, s). G U n ;  RI,  GL(nI2;  W), O(r ,  S I ,  Sp(n;  R), O(n/2 ;  W), 
Sp(r /2 ,  s /2) ,  where r + s =  n. 

1. Introduction 

Finite-dimensional complex vector spaces present themselves in quartets of the kind 

v, V’,  v, V’ (1) 

(see Shaw (19821, 9 1.5.5). Here V’ denotes the dual, v the antispace and v’ the 
antidual of the complex vector space V. We can consider v’ as antispace 7 of the 
dual of V, or as dual (v)’  of the antispace of V, or as the space AL( V, C) of antilinear 
functionals defined on V. In fact, complete democracy reigns within a quartet: for 
example, starting out from V’ we can consider it to have dual V,  antispace v’ and 
antidual 

Consequently finite-dimensional complex representations of a group 9 come along 
in corresponding quartets 

D, b, D, D (2) 
whose respective carrier spaces are as in (1). Here 6 denotes the cptragredient 
representation, denotes the complex conjugate representati:n and denotes the 
contragredient of 0, or equally well the complex conjugate of D. If one of the quartet 
(2) is an irreducible representation, then so of course are the other three. From now 
on we restrict our attention to irreducible representations. 

Given such a quartet of representations of 3 we can immediately distinguish the 
following cases. 

Case 0. All four representations are (linearly) inequivalent. 
CaseI.  D = ~ % D = D  

Case I I I .  D = D, b = D 
Case IV .  All four representations are (linearly) equivalent. 

Case II. D = D, 6 = DA but no other equivalences occur. (3) I 
1 

Actually, instead of the linear equivalence (in cases I1 and IV) of D and D we prefer 
from now on to consider the antilinear equivalence of D and 6, and instead of the 
linear equivalence (in cases 111 and IV) of D and D we prefer to consider the antilinear 
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self-equivalence of D. Thus cases I, I1 and 111 are characterised by the existence of 
one, and only one, of the linear or  antilinear isomorphisms G, P and K which satisfy, 
respectively, the following intertwining properties (4), (5) and (6): 

Case 1. There exists a linear isomorphism G: V +  V’ which intertwines D with 6 :  

GD(g) = 6 ( g ) G  for all g.s 9. (4) 

PD(g) = fi(g)P for all g E 9. ( 5 )  

Case I I .  There exists an  antilinear isomorphism P :  V +  V‘ which intertwines D 
with 6: 

Case ZII. There exists an  antilinear isomorphism K :  V +  V which commutes with 
the D(g): 

K D ( g )  = Jxg)K for all gE 9. (6) 

Correspondingly, case IV is characterised by the simultaneous existence of two, and 
hence all three, of the above isomorphisms G, P and K. 

As is spelled out in the next section, case I is equally well discussed in terms of 
the existence of a non-degenerate invariant bilinear form, and  divides into two subcases, 
I, and I-, according to whether the bilinear form is symmetric or skew symmetric. 
Similarly case I1 is equally well discussed in terms of the existence of a non-degenerate 
invariant sesquilinear form; this last can be taken to be Hermitian, and  so case I1 
divides into subcases 11‘‘3” according to the signature ( r ,  s),  r +  s = n = dim V, of the 
form. Furthermore case I11 divides into two subcases, 111, and IIIL, according to 
whether the representation D is of real or quaternionic type. 

Consequently case IV divides into subcases IVY:’ (combining together III,, 
I I (r2s ’ ,  In). Here all four possibilities ++, +-, -+, -- for E ,  7 can be realised, but for 
the last three of these possibilities we will see that not all values of the signature ( r ,  s)  
are allowed. 

As will be summarised in table 1, the result is that the representation D is uniquely 
associated with a certain classical group, and so can be assigned to just one of ‘ten 
classical types’ of representation. Three of these ten types subdivide further according 
to the value of the signature ( r ,  s ) .  

The classical groups themselves are of course very well known. The ones occurring 
in this present work, and in most of the theoretical physics literature, are those associated 
with vector spaces over R, C or W (where W denotes the non-commutative division 
algebra of the real quaternions). In addition to the general linear groups of such spaces, 
the other classical groups arise (see, for example, Birkoff and Von Neumann 1936, 
Dieudonni 1971, Porteous 1969) from consideration of the isometries of those (non- 
degenerate sesquilinear) scalar products which are orthosymmetric, i.e. are such that 
x .  y = 0 holds if and only if y x = 0 holds. Mathematical physicists usually become 
acquainted with them via texts such as Helgason (1978) or Barut and Raczka (1977), 
where they are used to provide realisations, at the Lie group level, for each of Cartan’s 
non-exceptional simple real Lie algebras. 

The chief point of the present work is to demonstrate that all of these classical 
groups also arise very naturally from a classification of finite-dimensional irreducible 
complex representations of arbitrary groups. As will be seen below, the derivation of 
this classification scheme requires only a rudimentary knowledge of group representa- 
tions, involving very little more than appeals to Schur’s lemma. Furthermore, it should 
be pointed out that the scheme is in part already well known. In particular (6) is 
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treated in most texts on group representations, and the representation D is thereby 
assigned to one of three Frobenius-Schur types: 

(0) = strictly complex (+) = real ( - )  = quaternionic 

according as (6) has a solution K which 

type (0): is of necessity K = 0 

type (+): satisfies K * = + I  

type (-): satisfies K 2  = - I .  

(In the classification of the present paper these Frobenius-Schur types subdivide 
further-see (40).) 

It may well be the case that the content of table 1 is known to many experts in the 
field, and may even be implicit in the published work of some; however, the author 
is not aware of any explicit detailed treatment in the standard literature concerning 
case IV of table 1. 

2. The ten classical types 

Let n =dim V, where V carries the (irreducible, complex) representation D of the 
group 3. 

Case 1. If G E L( V, V ’ )  satisfies (4), then so does its transpose G‘E L( V, V ’ ) .  
(Strictly of course G‘E L( V”, V’), but we make the customary identification (see, for 
example, Shaw (1982), (1.38)) of the double dual V of V with V itself.) But by 
Schur’s lemma any non-zero solution G E L( V, V ’ )  of (4) is not only of necessity an 
isomorphism but is also unique up to a scalar multiple. Consequently G‘ = t)G, where 
t) E C satisfies t)2 = 1 on account of the property ( Gt)‘ = G. Thus case I divides into 
two subcases, according to whether 7 = +1 or 17 = -1: 

Case I+. G‘= G Case I-. G‘ = -G. ( 7 )  

x * y = ( x , G y )  x y  E v (8) 

Upon defining the bilinear form x . y on V by 

where ( , ): V x  V ’ + @  denotes the natural pairing of V and V’,  we see that the 
intertwining property (4) translates into the invariance property 

D ( g ) x  * m ) Y  = x * Y (9) 

Case I+. x . y = y x C a s e I - .  x . y = - y . x .  (10) 

for all g e  % 

and the conditions ( 7 )  translate into the symmetry conditions: 

Thus V is equipped with an orthogonal (case I + )  or symplectic (case I - )  geometry 
which is (since G is an isomorphism) non-degenerate, and the image of 9 under D 
is restricted to lie inside the associated isometry subgroup of GL( V )  = GL( n ;  C ) :  

(11)  

where in the symplectic case n = 2m is necessarily even. Hence the entries under case 
I in the last two columns of table 1. 

Case I I .  This is similar to case I, but because the mapping P :  V +  V ’  which satisfies 
(5) is antilinear, we need to appeal to a corresponding antilinear version of Schur’s 

Case I,. D ( g )  E O( V )  = O( n ;  C) Case I - .  D ( g )  E Sp( V )  = Sp( n ;  C) 
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lemma (see, for example, Shaw (1982), exercise 3.4.3) in order to deduce that P is not 
only, if non-zero, of necessity an  anti-isomorphism, but satisfies P' = AP. Since (P')'  = P 
and ( A  P)' = h P' we see that A E C satisfies h A  = 1. Hence by multiplying our original 
solution P of (5) by a suitable phase factor we can arrange for our new solution to 
satisfy P'= P. 

Upon defining the non-degenerate sesquilinear form (x, y )  (linear in x, antilinear 
in y )  on V by 

we see that the intertwining property (5) translates into the invariance property 

(D(g)x, D(g)y) = (x, Y 1 for all g E  % (13) 

and the condition P'= P translates into the condition (x, y) = ( y ,  x) of Hermitian 
symmetry. Thus V is equipped with a non-degenerate (pseudo-)unitary geometry and  
the image of 3 under D is restricted to lie inside the associated isometry group: 

Case 11. D(g) E U( V) = U( r, s). (14) 

Here ( r ,  s), r +  s = n, denotes the signature of the Hermitian form (12). We can, if 
necessary, replace P by -P  so as to arrange r 3 s. In this way we assign a unique 
classical group U(r, s)  to a representation belonging to case 11. 

Case I l l .  If the non-zero antilinear operator K :  V+ V satisfies (6) then Schur's 
lemma (antilinear version) asserts not only that K has an  inverse but also, since K- '  
satisfies (6), that K-' = E K .  Here, using K K ' =  K ' K ,  we see that F is necessarily real, 
and so by a suitable normalisation of K we can arrange for F to be +1 or -1: K 2  = * I  
(but where the sign is not under our control). Consequently case I11 divides into two 
subcases: 

(15) 

of 

W = { X E  V: K x = x }  (16) 
(cf Shaw (1982), $0 1.5.5, 1.5.6). Since the operators D(g)EGL( V ) s G L ( n ;  C) com- 
mute with the conjugation K ,  and hence leave W invariant, they are complexifications 
of corresponding operators A(g) E GL(  W): 

Case III,. K' = + I  Case III-. K 2  = - I .  

In case III,, K is a conjugation and the space V is the complexification V =  
the (n-dimensional) real vector space 

Case Il l , .  D(  g )  = A( g)' where A(g) E GL( W) 3 GL(n; R). 
(17) 

I n  other words, if a(ny) basis for W is chosen as our basis for V, then the operators 
D ( g )  are realised as real matrices E GL(n;  R). 

In case 111-, K is a quaternionic unit and the space V is the symplectification 
V =  of a quaternionic vector space W. Here W coincides as a set with V, but is 
given the structure of a quaternionic space by laying down that K should play the 
role of the thkd  quaternionic unit k E W (which construction succeeds since K ( i l )  = 
- ( i  I )  K ,  i = 4-1 E C, mirrors the quaternionic relation ki = - ik ) .  Thus for q = A + p k  E 

H ( h = A , + i h , ~ C ,  p = p l + i p 2 ~ @ ) ,  wedefine 

(18) 
and so convert V into a quaternionic space W. If  { e l ,  e>, . . . , e,n} is a basis for W, 

qx = Ax + p K x  
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then { e , ,  Ke , ,  . . . , e,,,, Ke , }  is seen to be a basis for V. Consequently in case 111- the 
dimension of V is necessarily even: n = 2m. 

Let A ( g ) :  W +  W denote the operator D ( g ) :  V +  V when we switch our point of 
view and regard, as above, the C space V as the W space W. Since the D ( g )  are not 
only C linear operations on V but also commute with K ,  it follows from the definition 
(18) that the A ( g )  are W linear operators on W :  A ( g ) q x = q A ( g ) x .  We will say that 
the operators D ( g )  E GL(  V )  = GL(n ;  C) are symplectifications A(g)' of corresponding 
operators A ( g )  E GL( W ) :  

Case ZZZ-. D ( g )  = A(g) ' :  where A ( g )  E GL(  W )  r G L (  n/2; W). 
(19) 

Thus in case 111 we are essentially dealing with an  irreducible representation A 
carried by a real n-dimensional (case 111,) or quaternionic n/2-dimensional (case 
IIIL) space W, where w"-= V. For simplicity we will accordingly say that D is real 
in case 111, and quaternionic in case IIIL. 

Case ZV. The considerations invoked above to deal with cases I, I1 and 111 were 
elementary and  essentially well known. Almost as elementary, but possibly not so well 
known, are the corresponding considerations required to treat a representation D 
belonging to case IV. In  this case all three of the foregoing 'structures' are simultaneously 
present, namely: 

(i) an  invariant bilinear form x . y = v y .  x ( 7  = i l ) ;  
(ii) an  invariant Hermitian form ( x ,  y ) ;  
(iii) a structure map? K ,  satisfying K 2 =  e l  ( E  = i l ) .  

Moreover these three structures are reljated: any two essentially determine the third. 
For P and G K  both intertwine D with D, and so, by Schur's lemma (antilinear version) 
once more, P must be a scalar multiple of G K .  By replacing G by a suitable scalar 
multiple we can arrange that 

P = {  G K  i f q - 1  
i G K  if e7  = -1. 

In other words we arrange that the three structures are related by 

Here G ,  P and K still satisfy 

G'= 7G P ' =  P K ' = E Z  (22) 

and  furthermore P determines a signature ( r ,  s) with r S  s = YI and r 2 s. Observe that 
G, P and K are still arbitrary to the extent 

G-aWG P - a P  K - w K  (23) 

where J w I  = 1 and a is real (and, in fact, positive if we abide by our arrangement r 2 s). 
Let K i  and k denote adjoints of K with respect to the Hermitian form ( x , y )  and 
bilinear form x . y :  

( K ' x ,  Y )  = (x, K Y )  k . ~ .  Y = X .  K y .  (24) 

+ cf A d a m  (1969), definition 3.2 
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Then it follows from (21) and (22) that 

K ~ K  = E T I  (25a) 

I Z K  = I .  (256) 

To prove (25b), first of all let us see what happens if we omit the i in (21). Then we 
would obtain -~ - 

K x -  K y  = (Kx, y )  = ( y ,  Kx) = y .  K'X= ETX y 

and hence we would obtain the result Z K  = &TI. 
Upon inserting the i in (21) in the cases when ET = -1, we obtain the desired result 

I?K = I ,  which last proves the more convenient result for our further deliberations. 
Hence our choice of arrangement in (21). The result (25a) is proved similarly (and, 
of course, is not affected by replacing K by i K ) .  

Case IV divides into various subcases IVv;i' according to the values of the signs 
E, 7 and of the signature ( r ,  s). It should be noted that for the cases when ET = - 1  the 
signature is necessarily neutral. In these cases the operator K satisfies K K = - I  and 
so maps an orthonormal basis of signature ( r ,  s) onto one of signature ( s ,  r ) ,  whence 
by Sylvester's law of inertia r = s =  n / 2 .  So we need to consider cases IVY:), IV+-, 
IV-+ and IV??). (We will see in a moment that any signature is possible if E = 77 = +1 
but that r and s have to be even if c = 77 = -1.) 

where the real 
n-dimensional vector space W consists (see (16)) of those elements of V which are 
'real' with respect to K .  Note that the restriction of the bilinear form x y to W x W 
is real: 

where the last equality follows from (25b). Thus in case IV?;) W carries a real 
orthogonal geometry whose signature must be ( r ,  s )  since x .  y = (x, y )  for x, y E W, 
while in case IV+_ W carries a (real) symplectic geometry. In the cases E = +1 it thus 
follows from (9) and (17) that the D ( g )  are complexifications of operators A ( g )  lying 
inside the isometry group of the real vector space W: 

(26) 

(27) 

In the cases E = +1, when K is a conjugation, recall that V =  

- 
x . y = K x .  K y = x . y  for X E  W, Y E  W 

Case IV?:). D ( g ) = A ( g ) " :  A ( g ) E O (  W ) = O ( r , s )  

Case ZV+-. D ( g )  = A(g) ' :  A ( g )  E Sp( W )  = Sp(n, R). 

In  the cases E = -1 when K is a quaternionic unit recall that V = Wc where the 
quaternionic m-dimensional ( m  = n/2) vector space W coincides as a S space with 
V, but is considered as an W space by defining kx to be Kx, as in (18). 

In case IV-, we can, as we now demonstrate, define a sesquilinear form b: W x W -+ 

In order to prove that b is W linear in its first variable it suffices to check the two 
properties 

b(ix, y )  = ib(x, y )  

b ( k ,  U )  = kb(x, y ) .  

(29a) 

(296) 
Property (29a) is immediate and (296) is quickly checked: 

b ( k x , y ) =  K x . y + k - ' K 2 x . y  by(18)and(28)  

= Kx.  y + k ( x .  y )  = kb(x,y). 
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Now b enjoys the symmetry property 

b ( x ,  Y ) ~  = b ( y ,  x )  (30) 

where e denotes the opposite involutary automorphism of W defined by 

q e  = kgk-' .  (31) 

Upon noting that A e  = A and Ak = k i ,  for A E C c W and that k e  = - k  = k - ' ,  we have 

b ( x ,  y ) e  = ( x  * y)' + ( K x  . y) 'k  

= x '  y +  k ( K x .  y )  

= x . y - k ( x .  K y )  since ZZ = K - '  = - K  

= y * x + k - ' K y  3 x = b ( y ,  x ) , 

Consequently b is 'W' bilinear' in the sense that (in addition to being bi-additive) it 
satisfies 

Moreover the non-degeneracy of x .  y implies that of b ( x ,  y ) .  
It follows from (6), (9) and (19) that the D ( g ) ,  when viewed as the W linear 

operators A ( g )  on W, lie inside the isometry group O( W) = O( V )  n GL( W) = U( V )  n 
GL( W) of the W space W (the latter being equipped with the non-degenerate W e  
bilinear form b ) :  

b ( P ,  q y )  = M x ,  Y ) q e  P , q E W .  (32) 

Case ZV-+. D ( g )  = A(g)' where A ( g ) E O (  W)=O(m;W) .  (33) 

Here O( m ;  W) denotes the group of m x m quaternionic matrices which leave invariant 
the form 

x ' ( y ' ) e + x ' ( y ' ) 8 + .  . . + x " ( y " ) @  

on W"-the group isomorphism O( W )  = O( m ;  W) coming about since, using (32), we 
have 

m 

b ( x ,  Y )  = c X " ( Y " ) '  (34) 

relative to any orthonormal basis { e l , .  . . e,} for W: b(e, ,  e b )  = &. (Such bases exist: 
see, for example, DieudonnC (1971) and Porteous (1969).) 

a = l  

The case IV?) can be dealt with in a very similar fashion, upon defining 

h ( x ,  Y )  = (4 Y )  + k - ' ( K x ,  Y ) .  (35) 
We quickly check, using K - '  = - K  = Kt ,  that h is a Hermitian form on W, in that (in 
addition to being bi-additive) it satisfies 

It follows that the D ( g ) ,  when viewed as the W linear operators A ( g )  on W, lie inside 
the isometry group Sp( W )  = Sp( V )  n GL( W )  = U( V )  n GL( W) of the W space W (the 
latter being equipped with the non-degenerate Hermitian form h ) :  

Case ZV?:). D( g )  = A( g)" where A ( g )  E Sp( W )  = Sp( p ,  q ) .  
(38) 
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- ~ - Here, instead of (34) we have 
- 

h ( x , y ) = x ' y ' + .  . . + X ~ Y " - X ~ + I  Y ' + I - .  . .-X'",V"' (39) 

relative to an orthonormal basis {e,, . . . e,} for W of signature ( p ,  q ) ,  ( p  + q = m ) ,  and 
Sp( p,  q )  denotes the group of m x m quaternionic matrices which leave invariant the 
Hermitian form on W" occurring on the RHS of (39). The signature ( p ,  q )  is of course 
an invariant of h ;  indeed, the basis {e i , .  . . , e,, Ke,, . . . , Ke,} for V will have, by (35), 
signature (2p ,  2 q ) ,  whence p = r / 2 ,  q = s/2. Note, as previously announced, that r and 
s are necessarily even in the cases when E = 7 = -1. 

3. Summary 

The foregoing natural classification of the irreducible complex representations of a 
group into various 'classical' types is summarised in table 1. In column 4 we give the 

Table 1. Assignment of a complex n-dimensional irreducible group representation D to 
one? of ten classical types. 

Associated 
classical Restrictions on 

Case Extra structure present Subcases group n and/or (r, s )  

0 - 0 

1 Non-degenerate invariant 
I?=[; :  bilinear form x y = ~ ) y  x, 

I )=*l  

I1 Non-degenerate invariant 1 1' r. 5 1 

Hermitian form (x, y )  of 
signature (r, s )  

Structure map K {:::I 111, = 
I11 

K Z = d ,  E = T l  

IV All 3 structures x . y, (x, y j ,  K 

- 
n = 2 m  

- 
n = 2 m  

- 
n = 2m, r = s = m 
n = 2m, r = s = m 
n =2m, r = 2 p ,  s = 2 q  

+ T h e  assignment will be unique if, by appropriate choice of the overall sign of (x, y ) ,  we arrange for the 
signature to satisfy r z s. 

classical group, G say, which preserves the structures listed in column 2. Thus (at 
least if we take the carrier space V to be C") in cases I and I1 the operators D ( g )  
form a subgroup of the stated classical group G c GL( n ;  C), while in cases I11 and IV 
the operators A ( g )  (upon R" or upon W"), where A(g)' = D ( g ) ,  form a subgroup of 
the stated classical group G c GL( n ;  R) or G c GL( n / 2 ;  W ) .  

Of course, groups of m x m quaternionic matrices can be thought of as groups of 
2 m  x 2 m  complex matrices, corresponding to the use of bases of the kind 
{e], . . . , e,, Ke,, . . . , Ke,} for the complex space V = w,  with {e,, . . . , e,,,} a basis 
for the quaternionic space W. When GL (m; W )  and O ( m ;  W )  are thought of in this 
way they are commonly denoted by U * ( 2 m )  and 0 * ( 2 m )  (see, for example, Helgason 
(1978) or Barut and Raczka (1977)). 
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Incidentally, as far as the classical orthogonal groups themselves are concerned, 
these are usually classified into two kinds according to whether n is odd or even, 
corresponding to their association with the complex simple Lie algebra Bk, where 
2k+ 1 = n, or with Dkr where 2k = n, respectively. 

Bearing this notation in mind, the classical groups in table 1 are precisely those 
studied in the classical mathematical literature, and which can be found listed in table 
11.53 of Porteous (1969), in chapter 3, 0 7 of Barut and Raczka (19771, in chapter 10 
of Helgason (1978), and in many other texts. 

Altogether, discounting the signature aspect of the classification which enters into 
cases 11, IV,, and IV--, we obtain ten types of representation corresponding to the 
tent classical groups listed in column 4. As discussed above, for the last three types 
listed the signature is wholly or partly restricted in value, as in column 5 of the table. 

As a simple illustration of the above classification, consider the representation D’” 
of the group 3 = SL (2; C). Bearing in mind that the basic representation D1’2s0 is 
symplectic (since SL(2; C) = Sp(2; C) ) ,  that the complex conjugate of D’,’ is D’.’, and 
that D’” is linearly equivalent to D’ .’ if and only i f j  = j ’ ,  the classification is as follows. 
If j # j ’  then D’” is of type I, or I -  according to whether 2 ( j  + j ’ )  is even or odd, 
while D’.’ is of type IV,,, the signature being indefinite for j # 0. 

Similarly, in the case of the group SU(2) the representation D’j2 is both unitary 
and, since SU(2) c SL(2; C)  = Sp(2; C), symplectic, and so is of type IVd‘F, where ‘def’ 
denotes that the signature is positive definite. Consequently the representation D’ of 
SU(2), being the (2j)th symmetrised tensorial power of D’/*, is of type IVFi  or IVd“ 
according to whether 2j  is even or odd. 

Once one knows that a representation falls under case IV one should be immediately 
attuned to the possibility of making good use of any, or all, of the three structures 
x * y,  (x, y ) ,  K which are present. For example, when dealing with the 3j-coefficients 
for the group SU(2) it helps to stress the bilinear form x * y rather than the Hermitian 
form (x, y )  (see Shaw (1983), § 12.3). 

4. The Frobeniudchur types 

In terms of the above classification these are seen to subdivide as follows: 

(0) strictly complex: 0 U I U I1 

(+) real: 111, U IV,, U IV,- (40) 

(-) quaternionic: 111- U IV-+ U IV__.  

Let us specialise now to a representation D which is pseudo-unitary, i.e. falls under 
case I1 or IV. Let us further suppose that the signature ( r ,  s) is non-neutral, i.e. r # s. 
This last supposition rules out cases IV,- and IV-+, leaving only the three possibilities 

which are associated with the respective classical groups U(r, s) ,  O(r ,  s), Sp(r/2, s/2). 
Upon comparing (40) and (41) we obtain the following result: $0 is any irreducible, 

t Porteous (1969, p 270) (see also pp 207 and 216) assigns code numbers 0, 1 , 2 , .  . . , 9  to these ten classical 
groups; in the order in which they are listed in the table, their Porteous codes are 9, 7, 3, 8, 1, 5 ,  0, 2, 6, 4. 
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pseudo-unitary representation for  which the signature is non-neutral, then 

strictly complex inequivalent to ~5 
D is [real  U D is { orthogonal (42) 

quaternionic symplectic. 

In particular this result applies to an irreducible representation which is unitary in the 
strict sense (i.e. positive definite signature) and so holds whenever the group $9 is finite 
or compact. This particular case of (42) is of course well known (see, for example, 
Adams (1969), theorem 3.50). 

In the case of a finite or compact group $9 there is (see, for example, Adams (1969), 
theorem 3.62) a well known classical criterion, involving averaging over the group, 
which decides the Frobenius-Schur type ( E ) ,  E = 0, +, -, of an irreducible representa- 
tion D, namely 

A u , , 9 x ( g 2 )  = E (43) 

where x ( g )  = T r  D ( g ) .  It may be of interest to give a proof of this classical result (43) 
in the present setting. To this end let us make use of the following form of the group 
orthogonality relations for D :  

A u D ( g ) x .  D ( g - ' ) y  = n - ' y .  x (44) 

valid (see Shaw (1983), (13.1.41)) for any bilinear form x .  y. If D falls under case 
IV, then we can take x .  y to be the previously considered invariant bilinear form, 
whence (44) leads to 

A u D ( g 2 ) x .  y = T n - ' x  y 

and hence 

A u g G 9 D ( g 2 )  = & n - ' I .  (45) 
Here we have used the fact (see (41)) that 7 = E for a (strictly unitary) representation 
D E  IV. Upon taking the trace, we obtain the desired group character result (43) for 
the cases E = $1 or E = -1. To obtain (43) in the case E = 0 when D E  11, simply use 
the group orthogonality relations for the inequivalent (see (42)) representations D and 
B. 
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